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Abstract

Purpose: This study aimed to determine the relevance of irst- and high-order radiomic features derived 
from Diffusion-Weighted Imaging (DWI) and Apparent Diffusion Coef icient (ADC) maps for predicting treatment 
response in patients with Undifferentiated Pleomorphic Sarcoma (UPS).

Methods: This retrospective study included 33 extremity UPS patients with pre-surgical DWI/ADC and 
surgical resection. Manual volumetric tumor segmentation was performed on DWI/ADC maps acquired at 
Baseline (BL), Post-Chemotherapy (PC), and Post-Radiation Therapy (PRT). The percentage of pathology-assessed 
treatment effect (PATE) in surgical specimens categorized patients into responders (R; PATE ≥ 90%; 16 patients), 
partial-responders (PR; 89% - 31% PATE; 10 patients), and non-responders (NR; PATE ≤ 30%; 7 patients). 107 
radiomic features were extracted from BL, PC, and PRT ADC maps. Statistical analyses compared R vs. PR/NR.

Results: Pseudo-progression at PC and universal stability at PRT were observed in R and PR/NR based on 
RECIST, WHO, and volumetric assessments. At PRT, responders displayed a 35% increase in ADC mean (p = 0.0034), 
a 136% decrease in skewness (p = 0.0001), and a 363% increase in the 90th percentile proportion (p = 0.0009). 
Comparing R vs. PR/NR at BL, statistically signi icant differences were observed in glrlm_highgraylevelrunemphasis 
(p = 0.0081), glrlm_shortrunhighgraylevelemphasis (p = 0.0138), gldm_highgraylevelemphasis (p = 0.0138), glcm_
sumaverage (p = 0.0164), glcm_jointaverage (p = 0.0164), and glcm_autocorrelation (p = 0.0193). At PC, irstorder_
meanabsolutedeviation (p = 0.0078), irstorder_interquartilerange (p = 0.0109), irstorder_variance (p = 0.0109), 
and irstorder_robustmeanabsolutedeviation (p = 0.0151) provided statistically signi icant differences.

Conclusion: Observing a high post-therapeutic ADC mean, low skewness, and high 90th percentile proportion 
with respect to baseline is predictive of successfully treated UPS patients presenting > 90% PATE. Highly 
signi icant higher-order radiomic results include glrlm-highgraylevelrunemphasis (BL) and irst-order-mean 
absolute deviation (PC).
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Introduction
Soft Tissue Sarcomas (STS) are an uncommon and diverse 

subgroup of malignant tumors [1,2]. The largest subgroup is 
Undifferentiated Pleomorphic Sarcoma (UPS), accounting for 
approximately 20% of all cases [3,4]. UPS tumors can occur in 
any part of the body at any age but are more common in older 
patients [5,6]. UPS represents an archetypical cellular STS 
imaging tumor model signi icantly different from primary 
myxoid, chondroid, lipomatous, or ibrous-rich STS [5,6].

Post-treatment characteristics of STS 

After undergoing treatment, STS can exhibit decreased 
cell count with degenerative changes such as Treatment-
Induced Necrosis (TIN), Treatment-Induced Fibrosis (TIF) 
or hyalinization, Treatment-Induced Hemorrhage (TIH) 
with the deposition of hemosiderin and intrusion of foamy 
macrophages [7]. Additionally, viable tumor cells in STS 
may be replaced with viable benign granulation tissue (TIF) 
instead of undergoing liquefaction or hemorrhagic necrosis. 
This makes determining the degree of treatment response 
dif icult, as the tumor may have decreased, increased or 
retained the same size. Traditional response criteria, such as 
the Response Evaluation Criteria in Solid Tumors (RECIST) 
[8], World Health Organization (WHO) criteria [6], and 
volumetric measurements, require a signi icant reduction 
in tumor size to determine positive response and are 
generally unreliable for treatment response assessment for 
STS [5,9]. Pathology-assessed treatment effect (PATE) has 
demonstrated more robustness as a prognostic indicator in 
sarcomas [10,11]. Values ranging from 75% to 95% PATE 
have been reported to de ine responders. These studies have 
consistently shown high 5- and 10-year survival rates and 
low rates of tumor recurrences among responders with high 
PATE [10].

Functional MRI 

Limitations of size-based response criteria (RECIST and 
WHO) and tumor volumetric measurements have prompted 
the exploration of new metrics capable of reliably assessing 
tumor response and providing early prognostic indicators. 
Functional MRI adds additional parameters [5,12] that allow 
the assessment of tumor biology, including cellularity and 
vascularity, utilizing sequences such as diffusion-weighted 
imaging (DWI) [13,14], contrast-enhanced susceptibility-
weighted imaging (CE-SWI) [15,16], and perfusion-weighted 
imaging with dynamic contrast enhancement (PWI/DCE) 
[17,18].

Diff usion-Weighted Imaging (DWI) and Apparent 
Diff usion Coeffi  cient (ADC) 

DWI is a non-invasive functional MRI sequence sensitive to 
the density of tumor cells within STS. By probing the random 
movement of water molecules, DWI is able to characterize 
the cellularity of malignant tumors, which generally have 

fewer extracellular spaces and smaller cytoplasm than 
benign tissues [ 1 3 , 1 9 , 2 0 . To quantify the degree of 
diffusion, the Apparent Diffusion Coef icient (ADC) values 
can be computed using either a simple mono-exponential 
model or more sophisticated models [20,21]. The restricted 
diffusion in malignancies generally results in lower ADC 
values, which can help distinguish them from benign lesions, 
which typically demonstrate higher ADC values [5]. Effective 
therapy resulting in cell death increases water diffusion and 
higher ADC values. ADC values are inversely correlated 
with the Ki67 labeling index (a tumor cell division rate 
measure, typically considered high above 30), displaying a 
low mean in high proliferation groups [12,22]. DWI/ADC has 
demonstrated value as a potential biomarker of response in 
sarcoma patients treated with preoperative radiation therapy 
[5,23,24]. Patients with successful responses to treatment 
(> = 90% PATE) typically present a post-therapeutic right-
sided ADC histogram with negative skewness (Figures 1,2) 
and higher ADC mean than poor responders [5,25]. Tumor 
changes at the cellular level occur before morphologic 
changes, making DWI/ADC a potential prognostic tool if 
performed early in treatment [24-27].

Purpose 

To demonstrate that DWI/ADC MRI and higher order 
radiomics can be valuable clinical imaging tools to reliably 
assess treatment response in extremity UPS patients, 
outperforming traditional size-based and volumetric 
treatment assessment metrics.

Methods
General disclosures and statements: Methodology 

All included data collection, management, and processing 
methods were performed by all the institutional and 
generally accepted relevant clinical and research guidelines 
and regulations. 

Data availability: The datasets used and/or analyzed 
during the current study are readily available from the 
corresponding author upon reasonable request. 

IRB and waiver of consent: Due to the study’s 
retrospective nature, The UT MD Anderson Cancer Center 
Institutional Review Board waived the need to obtain 
informed consent (IRB identi ier PA16-0857 Protocol Name: 
“Utility of imaging of bone and soft tissue tumors and disease 
and treatment-related changes for diagnosis, prognosis, 
treatment response, and outcome”).

Patient population, patient inclusion, and exclusion 

The study included the analysis of 5,135 MRI scans 
performed for extremity STS in our institutional 29-magnet 
leet (consisting of 1.5T and 3.0T scanners from two 

manufacturers) between February 2021 and May 2023. 
Within this time range, 643 UPS studies were completed, 
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including preoperative primary tumor assessment and 
post-operative surveillance studies. We excluded all post-
operative surveillance and primary myxoid-UPS cases, 
yielding 33 extremity cases undergoing surgical resection 
and at least one preoperative MR within the de ined time 
range. Our study population of 33 patients ranged in age 
from 36 to 85 years old (average age of 64 years old, Table 1).
Twenty were male (61%) and 13 were female (39%). Patients 
were categorized into three groups based on the surgical 
specimen’s PATE percentage. Tumors demonstrating over 
90% PATE were classi ied as responders (R, n = 16), tumors 

with a PATE in the 31% - 89% range were labeled as partial 
responders (PR, n = 10), and tumors with a PATE of 30% 
or less were considered non-responders (NR, n = 7). Of 
the 33 patients, 10 underwent BL MRI studies outside our 
institution without DWI/ADC, while their subsequent PC 
and PRT MRIs were obtained at our institution. These 10 
Baseline (BL) patients were excluded from the ADC analysis 
although included for the conventional size-based RECIST, 
WHO, and volume analysis. For the remaining 23 patients, 
a complete set of advanced MRI studies, including PC and/
or PRT, was performed at our institution. For the DWI/ADC 

Figure 1: Case of pseudo-progression in a good-responder case: At the left panels, BL: Baseline/pre-treatment UPS ADC map, displaying central necrosis, 
a peripheral solid restricting tumor, and a left-sided intensity histogram. At the right panels and after completing 6 months of systemic therapy and 
radiation therapy (PRT: Post-Radiation Therapy), the tumor demonstrates a signi icant increase in volume (pseudo-progression), reduction in the solid 
diffusion restricting tumor, increase in mean ADC (from 1.2 to 2.1 x 10-3/mm2, reduction in skewness (from 1.0 to - 0.14) and an overall right-sided 
displaced histogram.

Figure 2: Pre-therapeutic contrast-enhanced MRI of UPS of the left thigh (A) with predominant solid internal enhancement and corresponding left-
sided ADC histogram (B) with positive skewness. Post-therapeutic contrast-enhanced MRI of the same lesion (D) demonstrating highly diminished solid 
enhancement and corresponding right-sided ADC histogram (C) with negative skewness. The igure was modi ied with permission from the authors, 
Valenzuela, R.F. et al. [2].
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analysis, 23 patients were included in the B.L. group, 15 in 
the PC group, and 30 in the PRT group (Table 1). Eighteen 
patients did not receive systemic chemotherapy, and three 
did not receive neoadjuvant radiotherapy before surgical 
excision. Therefore, they were excluded from the PC and PRT 
analyses, respectively.

MRI tailoring and schedule

At our institution, we performed functional MRI 
sequences, including DWI/ADC, CE-SWI, and PWI/DCE [5,9]. 
Parameters were tailored according to MRI vendor and 
ield strength. During the preoperative treatment, multiple 

scans were acquired for each patient and compiled into 
three time points: Baseline (BL, pre-therapy), post-systemic 
chemotherapy (PC), and preoperative/post-radiation (PRT) 
time points. For STS, we conducted a pre-therapy baseline 
study, one to three MRIs during systemic chemotherapy, and 
at least one post-radiation study one to two months after 
radiation therapy and immediately before surgical resection. 
ADC-derived metrics were compared at different time points 
against the standard references, including 1) Pathology-
Assessed Treatment Effect (PATE) on surgical specimens and 
2) Conventional tumor treatment size-based metrics such as 
RECIST, WHO, and volume.

Image storage and post-processing 

The acquired MR images were transferred to the 
institutional Picture Archiving and Communication System 
(PACS) (IntelliSpace PACS, Philips, Amsterdam, Netherlands). 
For analyses, the images were irst retrieved from PACS, and 
then the entire tumor volume was contoured manually by a 
trained research assistant, yielding a tumor volume of interest 
(VOI). MIM software (MIM Software Inc., Cleveland, USA) was 
used to outline, process, and generate VOIs from ADC images. 
The segmented tumor volume iles were exported as DICOM 
RT-Struct iles [28] to an institutional network storage drive. 
An in-house developed Cancer Radiomic and Perfusion 
Imaging (CARPI) automated framework [16], capable 
of intensity histogram-based irst-order and high-order 
radiomic feature extraction from advanced MRI sequences, 
processed all the RT-Struct iles containing segmented VOI 
data. Before radiomic feature extraction, all images were 

preprocessed in CARPI by performing B-spline interpolation 
to isotropic voxel spacing of 1 mm and discretization using 
a ixed histogram bin count of 50 [29]. CARPI extracted 107 
radiomic features using the Pyradiomics 3.0.1 Python library 
[30], including shape (14 features), irst-order statistics 
(18 features), and texture (75 features), and automatically 
recorded them in a Database Management System (DBMS) 
based on PostgreSQL (The PostgreSQL Global Development 
Group, Berkeley, USA). 

Reference standard RECIST, WHO, and volume

All 33 patients were analyzed for RECIST, WHO, and 
volumetric measurements. Conventional tumor size metrics 
for all three orthogonal planes were registered for all time 
points (BL, PC, and PRT) and used to estimate RECIST, 
WHO, and volumetric assessment metrics. Maximum 
diameter, area, and volume were measured at PC and PRT 
concerning BL, comparing responders and partial/non-
responders. RECIST, WHO, and volume criteria for partial 
response (P.R.) threshold were set at 30%, 50%, and 50% 
decrease, respectively. Progressive disease (P.D.) threshold 
was set at 20%, 25%, and 25% increase, respectively [31]. 
All responders and partial/non-responders displayed 
tumor size changes at the Post-Radiation (PRT) time point 
when compared to their respective baseline (BL), which fall 
within the range of stability, i.e., between +20% and -30% 
for RECIST and +25% and -50% for WHO and volume. All 
partial/non-responders demonstrated pseudo-progression 
at PC, crossing the threshold of +20% for RECIST and +25% 
for WHO and volume assessments. Similarly, all responders 
presented WHO and volumetric pseudo-progression at the 
post-chemotherapy time point (PC).

Reference standard PATE 

The 33 patients were categorized into three groups 
based on the surgical specimen’s PATE percentage. Tumors 
demonstrating equal to or greater than 90% PATE were 
classi ied as Responders (R), tumors with a PATE in the 
31% - 89% range were labeled as Partial Responders (PR), 
and tumors with a PATE of 30% or less were considered 
non-responders (NR). The three groups were compared, 
including 16 subjects in the R group, 10 in the PR group, and 
7 in the NR group (Table 1). The combined PR/NR group had 
17 subjects.

Radiomic analysis 

First-order radiomic features computed from ADC 
maps, including mean, skewness, kurtosis, 10th percentile 
proportion, and 90th percentile proportion, were statistically 
compared in R and PR/NR at PC and PRT in reference to 
BL. The 10th and 90th percentile proportions were obtained 
by computing the percentage of ADC values below the 
10th and above the 90th percentiles from the BL ADC 
histogram, respectively. Statistical analyses were performed 

Table 1: Extremity UPS patient population characteristics. PATE: Pathology-Assessed 
Treatment Effect.

Total Patients Included in the Study 33
Total Male 20 (61%)

Total Female 13 (39%)
Average Age 64 years (range 36 years - 85 years)

Responders (> = 90% PATE) 16
Partial Responders (Between 89% and 31% 

PATE) 10

Non-Responders (< = 30% PATE) 7
Patients with External Baseline Studies 10

Patients with Advanced Baseline Studies 23
Patients with Advanced Post-Chemo Studies 15

Patients with Advanced Post-Radiation Studies 30
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independently at BL, PC, and PRT, comparing 107 irst- and 
high-order ADC map-derived radiomic features in R vs. PR/
NR. All statistical analyses were performed using two-tailed 
non-parametric Wilcoxon rank-sum tests, with statistical 
signi icance assessed at the 5% level (p < 0.05). The statistical 
analysis was implemented in Python 3.10.13 using the SciPy 
library version 1.12.0 [32].

Results
ADC fi rst-order radiomics across treatment 

Figure 3 presents the irst-order radiomic trends 
observed in R and PR/NR. Table 2 summarizes the statistical 
results comparing PC and PRT relative to BL in R and PR/NR. 
At the PC time point, responders displayed a 31% increase 
in ADC mean (p = 0.0253), 140% decrease in skewness 
(p = 0.0034), and a 310% increase in 90th percentile 
proportion (p = 0.0246), with respect to BL. Subsequently, 
at the PRT time point, responders presented a 35% increase 
in ADC mean (p = 0.0034), 136% decrease in skewness 

Figure 3: Scatter plots of ADC mean, skewness, kurtosis, and 10th and 90th percentile proportions at baseline (BL) vs. post-chemo (PC) vs. post-radiation 
therapy (PRT) in responders and partial/non-responders. Each point in the plot represents the group mean with a 95% con idence interval. a.u.: Arbitrary 
Units.

Table 2: Summary of trends in ADC mean, skewness, kurtosis, 10th and 90th percentile proportion at Post-Chemo (PC) and Post-Radiation Therapy (PRT) with respect to baseline 
(BL) in responders and partial/non-responders. Note: All p-values resulted from two-tailed non-parametric Wilcoxon rank-sum statistical tests.

Mean Delta Skewness Delta Kurtosis Delta 10th Percentile Delta 90th Percentile Delta

Responders
PC vs. BL +31% (p = 0.0253) -140% (p = 0.0034) -52% (p = 0.3159) +11% (p = 0.3490) +310% (p = 0.0246)

PRT vs. BL +35% (p = 0.0034) -136% (p = 0.0001) -66% (p = 0.1228) -4% (p = 0.7119) +363% (p = 0.0009)

Partial/Non- Responders
PC vs. BL +7% (p = 0.2576) -44% (p = 0.4414) +101% (p = 0.3416) +76% (p = 0.8283) +93% (p = 0.2781)

PRT vs. BL +25% (p = 0.0136) -154% (p = 0.0136) +17% (p = 0.8823) +4% (p = 0.0257) +184% (p = 0.0257)

(p = 0.0001), and a 363% increase in 90th percentile 
proportion (p = 0.0009), with respect to BL Finally, at PRT vs. 
BL, partial/non-responders displayed a 25% increase in ADC 
mean (p = 0.0136), 154% decrease in skewness (p = 0.0136), 
4% increase in 10th percentile proportion (p = 0.0257), and a 
184% increase in 90th percentile proportion (p = 0.0257).

ADC fi rst- and high-order radiomics in responders vs. 
partial/non-responders 

Figures 4,5 summarize the statistical indings on 107 
radiomic features comparing R vs. PR/NR at BL and PC, re-
spectively. At the BL time point, glrlm_highgraylevelrunem-
phasis (p = 0.0081), glrlm_shortrunhighgraylevelemphasis 
(p = 0.0138), gldm_highgraylevelemphasis (p = 0.0138), 
glcm_sumaverage (p = 0.0164), glcm_jointaverage (p = 
0.0164), and glcm_autocorrelation (p = 0.0193) provided 
statistically signi icant differences between R and PR/NR. 
At the PC time point, irstorder_meanabsolutedeviation (p = 
0.0078), irstorder_interquartilerange (p = 0.0109), ir-
storder_variance (p = 0.0109), and irstorder_robustmeanab-
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solutedeviation (p = 0.0151) provided statistically signi icant 
differences between R and PR/NR. No statistically signi icant 
differences were observed in R vs. PR/NR at PRT.

Discussion
In this study, functional MR imaging, including DWI/ADC, 

was performed on 33 extremity UPS patients, categorized 

into responders (n = 16) and partial/non-responders 
(n = 17) based on PATE. 107 radiomic features were 
automatically extracted from ADC maps and statistically 
analyzed, comparing responders vs. partial/non-responders 
across the BL, PC, and PRT time points in the patient’s 
systemic treatment. The potential of ADC-derived radiomic 
features for predicting a patient’s response to treatment 

Figure 4: Baseline time point analysis. ADC map radiomics scatter plot (A) showing means with 95% con idence intervals sorted from largest to smallest 
differences between R and PR/NR, and boxplots (B) of top 10 radiomic features comparing R vs. PR/NR. All p - values resulted from two-tailed non-
parametric Wilcoxon rank-sum tests. s.v.: Standardized Value; R: Responders; PR/NR: Partial/Non-Responders.

Figure 5: Post-chemotherapy time point analysis. ADC map radiomics scatter plot (A) showing means with 95% con idence intervals sorted from largest to smallest differences 
between R and PR/NR, and boxplots (B) of top 10 radiomic features comparing R vs. PR/NR. All P-values resulted from two-tailed non-parametric Wilcoxon rank-sum tests. s.v.: 
Standardized Value; R: Responders; PR/NR: Partial/Non-Responders.
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was compared against the RECIST, WHO, and volumetric 
traditional response criteria.

Pseudo-progression and traditional response criteria 

Pseudo-progression occurs when a tumor enlarges, 
followed by a decrease in size without changes in therapy 
or evidence of progression in subsequent imaging or 
pathological assessments [9,33]. It can occur in up to 10% 
of STS responders and 30% of patients with intermediate 
responses. Tumor volume may increase up to 40% post-
radiation, and some cases may display an increase in volume 
despite showing 95% tumor necrosis [34]. Hence, an increase 
in tumor size during preoperative radiotherapy for STS does 
not necessarily indicate a lack of response [35]. Our indings 
demonstrated a high prevalence of pseudo-progression at PC 
and universal stability at PRT in both R and PR/NR based on 
traditional response assessments, indicating that RECIST, 
WHO, and volumetric measurements are unreliable for 
predicting histopathological effects, differentiating between 
R and PR/NR, and assessing overall therapeutic effectiveness 
(Figure 2).

First-order radiomic analysis across patient treatment 

Our results indicated that from BL to PRT, the ADC mean 
signi icantly increased by 35% in responders, consistent 
with previously reported indings [5,24,25]. This increase 
in ADC mean was accompanied by a signi icant reduction 
in skewness (-136%) and a signi icant increase in the 90th 
percentile proportion (+363%). Moreover, these changes 
were also observed in responders when comparing PC vs. BL. 
In summary, the post-therapeutic irst-order radiomic trends 
displayed by responders, including high ADC mean, low 
skewness, and high 90th percentile proportion, agreed with 
the right-sided displacement of the ADC histogram (Figure 2) 
typically observed in successfully treated UPS with > = 90% 
PATE [5].

Radiomics-based discrimination of responders vs. 
partial/non-responders 

The statistical analysis performed on the 107 irst- 
and high-order radiomic features comparing R vs. PR/NR 
displayed 6 high-order texture features signi icantly lower in 
R vs. PR/NR in reference to BL time point. Additionally, our 
results revealed 4 irst-order features signi icantly higher in 
R vs. PR/NR at the PC time point. Therefore, these radiomic 
features could potentially represent novel pre-treatment 
and post-therapeutic imaging biomarkers of response in UPS 
patients. Nevertheless, subsequent studies will be needed to 
validate these indings.

Study limitations 

The present study was mainly limited by the sample 
size (n = 33). Ongoing research efforts in our institution 
are tailored towards increasing the number of UPS patients 
imaged with DWI/ADC MRI to generate a more diverse and 
larger database for further analysis and validation.

Conclusion
The irst- and high-order radiomic features based on DWI/

ADC MRI demonstrate the potential to outperform traditional 
size-based response criteria in predicting treatment 
effectiveness for Undifferentiated Pleomorphic Sarcoma 
(UPS). In particular, high post-therapeutic ADC mean, low 
skewness, and high 90th percentile proportion compared to 
the baseline measurements can predict successfully treated 
UPS patients presenting 90% or higher PATE.
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